Data:	IHPC MA Nr 3210 / Ex-Version: 05 03 2015 🔭 Start Year: WiSe 2012
	amination number:
	11110
Module Name:	Introduction to High Performance Computing and Optimization
(English):	
Responsible:	Rheinbach Oliver / Prof. Dr
l ecturer(s):	Rheinbach, Oliver / Prof. Dr.
Institute(s):	Institute of Numerical Mathematics and Optimization
Duration:	1 Semester(s)
Competencies:	The students shall have an understanding of and ability to apply:
	 parallel computing on shared and distributed memory
	multiprocessor systems
	• parallel algorithms
	The students know relevant terms in English.
Contents:	Ingredients can be:
	 Portable parallel programming with OpenMP and MPI (Message
	Passing Interface); hybrid parallelization; accelerators
	 Code profiling, tracing and optimization methods using tools
	(profiler, VAMPIRE, etc.);
	 Relevant software libraries (e.g., BLAS, LAPACK, SCALAPACK,
	etc.)
	 Design and analysis of algorithms
	Parallel solution of linear systems (dense/sparse systems)
	International literature and relevant terms in Englisch
Literature:	Georg Hager, Gerhard Wellein, Introduction to High Performance
	Computing for Scientists and Engineers, Chapman & Hall, 2010
	OpenMP Standard, www.openmp.org
	Barbara Chapman, Gabriele Jost, Ruud van der Pas, Using OpenMP:
	portable shared memory parallel programming, MIT Press, 2008
	William Gropp, Ewing Lusk, Anthony Skjellum, Using MPI: Portable
	Parallel Programming with the Message-Passing Interface, MIT press,
	2000
	Michael Quinn, Parallel Programming in C with MPI and OpenMP, McGraw
	Hill, 2003
	Anne Greenbaum, Iterative Methods for Solving Linear Systems, SIAM,
	1997
Types of Teaching:	S1 (WS): Lectures (2 SWS)
	S1 (WS): Exercises (1 SWS)
Pre-requisites:	Recommendations:
	Basics knowledge in scientific programming and algorithms.
Frequency:	yearly in the winter semester
Requirements for Credit	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	MP/KA: MP = individual examination (KA if 30 students or more) [MP
	minimum 30 min / KA 120 min]
	PVL: Programming Project
	PVL have to be satisfied before the examination.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	MP/KA: MP = individual examination [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-