Data:	ADVTCMS, MA, Nr. 3587Version: 16.02.2022 🍡 Start Year: WiSe 2018
	/ Examination number:
	44511
Module Name:	Atomistic Simulation Methods
(English):	
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	Prakash, Aruna / DrIng.
	<u>Eidel, Bernhard / Prof. DrIng. habil.</u>
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Students will get familiar with the most recent developments in
	computational materials science and current state-of-the-art simulation
	methods for atomistic problems. They will learn the theoretical
	background of advanced methods on the nanoscale and will be able to
	apply those to new problems.
Contents:	This course will cover atomistics subjects such as atomic interactions,
	validation of potential functions, structure generation, surface energies
	as well as simulation and critical assessment of three-dimensional
	nanoscale specimens. Students will get an overview over current
	developments and will also be able to study such phenomena by hands-
	on simulations using open source software. Theoretical background and
	application of advanced methods for data analysis and visualization of
	atomic defect structures complement this course. The main emphasis of
	the exercises is on applying the methods from the lecture to problems
	with materials scientific relevance.
Literature:	
Types of Teaching:	S1 (WS): Lectures (2 SWS)
	S1 (WS): Exercises (1 SWS)
Pre-requisites:	Recommendations:
	basic experience with a Linux environment (bash/shell); knowledge of
	crystallography
Frequency:	yearly in the winter semester
Requirements for Credit	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	MP/KA (KA if 8 students or more) [MP minimum 15 min / KA 90 min]
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-
	studies.