Data:	CPTA MA Nr. 3658 / Ex. Version: 16.02.2022 🖜 Start Year: SoSe 2019
	amination number
	44509
Module Name:	Crystal Plasticity, Texture and Anisotropy
(English):	Crystal Plasticity, Texture and Anisotropy
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	Prakash, Aruna / DrIng.
	Fidel, Bernhard / Prof. DrIng. habil.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Students will be exposed to the materials scientific fundamentals of
	plasticity in single and polycrystals. They will learn mathematical and
	conceptual concepts concerning orientation distributions, texture and
	anisotropy and will be able to apply this knowledge for understanding
	material properties. They will learn about experimental methods for
	synthesis of polycrystalline materials, for testing and characterization.
	Students will be introduced to different types of representing the
	particular deformation behaviour in polycrystalline materials, i.e., mean
	field and full field approaches. They will be able to understand positive
	and negative aspects of these models and can transfer their knowlede
	to new models. An other emphasis is on fundamental concepts of grain
	boundaries together with approaches towards modeling them. The
	students will get acquainted with various tools for data analysis and
	simulations and will be able to apply them to new problems.
Contents:	Mathematical concepts of orientation distributions, description
contents.	and characterization of grain distributions
	Texture: Definition, typical textures
	 Experimental methods for synthesis, testing and characterization
	Basics of most commonly used crystal plasticity models
	Grain boundaries, 5-parameter description, experimental and
	modeling aspects
	The above topics will be extended in the hands-on
	tutorial/exercise/programming sessions, where the emphasis will be on
	applying the methods learnt in the lecture.
Literature:	1. Crystal Plasticity Finite Element Methods: In Materials Science
	and Engineering; F. Roters, P. Eisenlohr, T. Bieler and D. Raabe,
	2010, Wiley Publishers
	2. Texture and Anisotropy; U.F. Kocks, C. Tomé and HR. Wenk,
	1998, Cambridge University Press
	3. The measurement of grain boundary geometry; V. Randle, 1993,
	CRC Press
	4. Texture Analysis in Materials Science, HJ. Bunge, 1983, Elsevier
	5. Grain Boundary and Crystalline Plasticity, L. Priester, 2013, Wiley
	Publishers
Types of Teaching:	S1 (SS): Lectures (2 SWS)
	S1 (SS): Exercises (1 SWS)
Pre-requisites:	Recommendations:
	Mechanics of Materials, 2022-02-16
	Minimum requirements are scientific programming skills (as, e.g.,
	aqcuired during "Software Tools for Computational Materials Scientists
	1") and a basic understanding of plasticity (as, e.g., aqcuired from
	"Fundamentals of Microstructures").
Frequency:	yearly in the summer semester

Requirements for Credit For the award of credit points it is necessary to pass the module exam.

Points:	The module exam contains: PVL: Calculation and simulation MP/KA (KA if 6 students or more) [MP minimum 30 min / KA 90 min] PVL have to be satisfied before the examination.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self- studies. Der Zeitaufwand beträgt 150h und setzt sich zusammen aus 60h Präsenzzeit und 90h Selbststudium.