Data	MechTest MA Nr. 3207 Version: 05 04 2018 ** Start Year: WiSe 2018
	/ Examination number:
	50409
Module Name:	Experimental Methods of Structure Characterization of Matters
(English):	
Responsible:	Rafaia, David / Prof. Dr. rer. nat. habil.
lecturer(s):	Wüstefeld Christina / Dr -Ing
Institute(s):	Institute of Materials Science
Duration:	1 Semester(s)
Competencies:	Students get familiar with basic principles and applications of selected
competencies.	motheds for microstructure analysis of matters (mainly optical scapping
	and transmission electron microscony, diffraction methods) and learn
	and transmission electron microscopy, dimaction methods) and learn
	now these methods can be used for analysis of the real structure of
	materials.
Contents:	- Crystal symmetry operations, point and space groups in
	crystallography
	 Interaction of electrons, X-rays and neutrons with matter
	 Applications of optical, scanning and transmission electron microscopy,
	and X-ray, electron and neutron diffraction in the analysis of real
	structure and microstructure of matters:
	- Phase identification and guantification, use of
	crystallographic databases
	- Determination of the grain and crystallite size.
	- Global and local preferred orientation of crystallites
	- Residual stress analysis
Literature:	- L. Reimer: Scanning Electron Microscopy, Springer, Berlin 2010
	- V Bandle O Engler: Introduction to texture analysis macrotexture
	microtexture and orientation manning. Gordon & Breach. Amsterdam
	H. P. Klug, J. F. Alexander: X-ray diffraction procedures for
	nelverystalling and amorphous materials. New York, Wiley, and edition
	polycrystalline and amorphous materials, New Tork, whey, 2nd edition 1074
	1974. C. Ciacoverno, II.I. Managa, C. Artiali et al., Evendore entale of
	F C. Glacovazzo, H.L. Monaco, G. Artioli et al.: Fundamentals of
	Crystallography, IUCr Texts on Crystallography 15, 3rd edition, 2011
	- D.B. Williams, C.B. Carter: Transmission Electron Microscopy: A
	lextbook for Materials Science, Springer, New York 2016
Types of Teaching:	S1 (WS): Lectures (3 SWS)
Pre-requisites:	Recommendations:
	Profound knowledge of English, basics in materials science, mechanics,
	advanced mathematics, physics for scientists.
Frequency:	yearly in the winter semester
Requirements for Credit	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	MP/KA (KA if 5 students or more) [MP minimum 30 min / KA 120 min]
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-
	studies.