Data:	MLMS MA Nr. 3659 / Ex-Version: 23.03.2022 🏂 🛛 Start Year: SoSe 2019
	amination number:
	44510
Module Name:	Machine Learning for Materials Scientists
(English):	Machine Learning for Materials Scientists
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	Prakash, Aruna / DrIng.
	Eidel, Bernhard / Prof. DrIng. habil.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Students will be exposed to fundamental knowledge in stochastics.
	statistics and combinatorics and will be able to apply this knowledge
	using the programming language Python. They will accuire an overview
	over machine learning approaches and algorithms and will be able to
	choose the appropriate algorithm for a specific problem. Furthermore,
	they will be able to use existing machine learning libraries and to
	independently solve problems of materials scientific relevance. Students
	will be able to judge the quality of their results.
Contents:	 basics of stochastics and statistics: events, probability,
	conditional probability, variance, mean, median, likelyhood
	 fundamentals of regression and classification
	 concepts of linear approaches, neural networks, Bayesian
	methods, convolutional networks, support vector machines
	 training validation, testing, overfitting
	 selection of appropriate algorithms
	 implementation, e.g., using PvTorch, scikit-learn, or TensorFlow
Literature:	1. M. P. Deisenroth, A.A. Faisal, Ch.S. Ong: Mathematics for
	Machine Learning, 2019, Cambridge University Press, UK
	2. Sebastian Raschka, Vahid Mirjalili, Python Machine Learning,
	2017, Packt Publishing, Birminham, UK
	3. Phuong Vo. T. H. Martin Czygan, Getting Started with Python
	Data Analysis, 2015, Packt Publishing, Birminham, UK
Types of Teaching:	S1 (SS): Lectures (2 SWS)
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	S1 (SS): Exercises (1 SWS)
Pre-reguisites:	Recommendations:
	Good foundation in mathematics and Python programming (as, e.g.,
	acquired during "Software Tools for Computational Materials Scientists
	1")
Frequency:	yearly in the summer semester
Requirements for Credit	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	MP/KA (KA if 5 students or more) [MP minimum 30 min / KA 90 min]
	PVL: Coding
	PVL have to be satisfied before the examination.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self-
	studies.