Data:	MHP. MA. Nr. 3615 / Ex-Version: 06.06.2018 🛸 Start Year: WiSe 2018
	amination number:
	41913
Module Name:	Micromechanics and Homogenization Principles
(English):	
Responsible:	Kiefer. Björn / Prof. PhD.
Lecturer(s):	Kiefer, Björn / Prof. PhD.
	Kozinov, Sergii / DrIng.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Successful participants of this course are able to apply fundamental
	concepts of micromechanics to determine effective properties of
	multiphase elastic solids such as composite materials. They understand
	the theoretical foundations as well as the advantages and shortcomings
	of classical micromechanics techniques. The students are also familiar
	with advanced homogenization principles—both analytical and
	numerical in nature—that incorporate the influence of micro-defects
	(inclusions, cavities, cracks) and inelastic behavior. They have further
	acquired first experience with numerical implementation of these
	modeling concepts through simple programing examples.
Contents:	The main ingredients are:
	 Micromochanics tochniques for computing offective electic
	 Micrometrianics techniques for computing enective elastic proportios of composite media
	Fundamental Echelby solutions inclusions inhomogeneities
	 Fulluamental Esticity solutions, inclusions, incomogenetices Dilute distribution Mori-Tanaka and self-consistent approaches
	 Energetic hounds on effective properties
	General averaging theorems Hill-Mandel Principle periodic
	homogenization asymptotic expansions
	 Direct numerical homogenization schemes, including the
	FF ² -method
	 Numerical examples (programing in Matlab /Mathematica/Python
	Strength and failure, localization
Literature:	S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties
	of Heterogeneous Materials, Second Edition, North-Holland
	Series in Applied Mathematics and Mechanics, 1999
	Christensen, Mechanics of Composite Materials, Dover
	Publications, 2005
	• D. Gross and T. Seelig, <i>Bruchmechanik — mit einer Einführung in</i>
	die Mikromechanik, Springer-Verlag Berlin Heidelberg, 2016
Types of Teaching:	S1 (WS): Lectures / Lectures (2 SWS)
	S1 (WS): Excercises / Exercises (1 SWS)
Pre-requisites:	Recommendations:
	Continuum Mechanics, 2017-05-18
Frequency:	yearly in the winter semester
Requirements for Credit	The module even contained.
Points:	Ine module exam contains: MP/KA (KA if 10 students or more) [MP minimum 20 min (KA 120 min]
Cradit Daints:	
Grado:	<u>ft</u> The Grade is generated from the examination result(s) with the following
Grade.	weights (w):
	MD/KA [w/: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self
	studies. To belo deepen the understanding of the subject matter
	(voluntary) homework problems are given out along with the exercise
	(voluntary) nomework problems are given out along with the exercise