Data	NADE MA Nr. 2214 / Marcian, 20.01.2024 - Ctart Vaar, Wilso 2024
Data:	NADE. MA. NI. 5214 / VEISION: 29.01.2024 \cong plant real: wise 2024
	Examination number:
Module Name:	Numerical Analysis of Differential Equations
(English):	
Responsible:	Aland, Sebastian / Prof. Dr.
Lecturer(s):	<u>Rheinbach, Oliver / Prof. Dr.</u>
	<u>Aland, Sebastian / Prof. Dr.</u>
Institute(s):	Institute of Numerical Mathematics and Optimization
Duration:	1 Semester(s)
Competencies:	Students shall understand fundamental concepts of numerical analysis
	of ordinary and partial differential equations, such as discretization,
	consistency, stability, and convergence. They can apply discretization
	methods to compute the numerical solution of a given differential
	equation. They can compare various methods and evaluate their
	efficiency for a given problem. The students know relevant terms in
	English.
Contents:	ODEs: Euler methods, Runge Rutta Methods, Linear Multistep Methods,
	Stability, Stiffness;
	PDEs: Finite Difference techniques, time stepping, von Neumann
	stability analysis. Brief introduction to FEM.
	International literature and relevant terms in English are explained.
Literature:	Finite Difference Methods for Ordinary and Partial Differential Equations
	von Randy Leveque. University of Washington
Types of Teaching:	S1 (WS): Lectures (2 SWS)
·)	S1 (WS): Exercises (1 SWS)
Pre-reauisites:	Recommendations:
	Solid knowledge in computer programming. Advanced mathematics
	course for scientists and engineers. Some familiarity with the theory or
	applications of differential equations is helpful
Frequency:	vearly in the winter semester
Requirements for Cred	it For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	$K\Delta$ [120 min]
	Voraussetzung für die Vergabe von Leistungsnunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst
	KA [120 min]
Cradit Dainte:	
Crede:	<u>4</u> The Crede is generated from the examination result(s) with the following
Glaue:	Ine Grade is generated from the examination result(s) with the following
	weights (w):
	KA [W: 1]
workioad:	I he workload is 120h. It is the result of 45h attendance and 75h seit-
	studies.