Data:	NADE. MA. Nr. 3214 / Version: 10.05.2021 🥦 Start Year: SoSe 2012
	Examination number:
	11109
Module Name:	Numerical Analysis of Differential Equations
(English):	
Responsible:	Aland, Sebastian / Prof. Dr.
Lecturer(s):	Rheinbach, Oliver / Prof. Dr.
	<u> Aland, Sebastian / Prof. Dr.</u>
Institute(s):	Institute of Numerical Mathematics and Optimization
Duration:	1 Semester(s)
Competencies:	Students shall understand fundamental concepts of numerical analysis
	of ordinary and partial differential equations, such as discretization,
	consistency, stability, and convergence. They can apply discretization
	methods to compute the numerical solution of a given differential
	equation. They can compare various methods and evaluate their
	efficiency for a given problem. The students know relevant terms in
	English
Contents:	ODEs: Euler methods, Runge Rutta Methods, Linear Multistep Methods,
	Stability, Stiffness;
	PDEs: Finite Difference techniques, time stepping, von Neumann
	stability analysis.
	International literature and relevant terms in English are explained.
Literature:	Finite Difference Methods for Ordinary and Partial Differential Equations
	von Randy Leveque, University of Washington
Types of Teaching:	S1 (SS): Lectures (2 SWS)
	S1 (SS): Exercises (1 SWS)
Pre-requisites:	Recommendations:
	Solid knowledge in computer programming. Advanced mathematics
	course for scientists and engineers. Some familiarity with the theory or
	applications of differential equations is helpful
Frequency:	yearly in the summer semester
Requirements for Cred	lit For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	KA [120 min]
Credit Points:	3
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	KA [w: 1]
Workload:	The workload is 90h. It is the result of 45h attendance and 45h self-
	studies.