Data:	STCMS. MA. Nr. 3586 / Version: 16.02.2022 📜 Start Year: WiSe 2019
Bata.	Examination number:
	44506
Module Name:	Software Tools for Computational Materials Scientists
(English):	Software 10015 for Computational Materials Scientists
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	Prakash, Aruna / DrIng.
Lecturer(s).	_
Instituto(s):	Eidel, Bernhard / Prof. DrIng. habil.
Institute(s): Duration:	Institute of Mechanics and Fluid Dynamics 2 Semester(s)
	` '
Competencies:	The students will be able to interact with their computer using a Unix
	shell. This includes monitoring their system resources, interacting with
	the file system, and setting up their work environment to their
	needs. Participants will know how to use a high-level general-purpose
	programming language and the fundamentals of software engineering
	within the scientific ecosystem of that language. This comprises basic
	design patterns, object-oriented programming, an introduction to
	modern file formats, efficient data serialization, data visualization,
	interfacing to other programs, and automated testing.
	The participants will be able to use modern version control systems for
	working in a collaborative fashion.
Contents:	These courses will cover the software tools used within computational
	materials science. The Unix shell will be introduced as a mean to
	interact with the computer to promote automation of repetitive tasks
	and working on remote systems, both for monitoring and file system
	interaction purposes. Libraries and packages from the scientific
	community will be utilized to pre- and postprocess data for third-party
	simulation software and to write simulations from the ground up. The
	underlying data structures that enable a high-level language to be
	efficient enough for large-scale simulations will be
	introduced. Techniques for collaboration with other software
	contributors in form of modern version control systems in conjunction
	with repository hosting will be outlined.
Literature:	http://www.tldp.org/LDP/intro-linux/intro-linux.pdf
	https://www.python.org
	https://matplotlib.org
	http://www.numpy.org
Types of Teaching:	S1 (WS): Lectures (1 SWS)
lypes or reaching.	S1 (WS): Exercises (1 SWS)
	S2 (SS): Lectures (1 SWS)
	S2 (SS): Exercises (1 SWS)
Pre-requisites:	DZ (55). EXCICISES (1 5W5)
Frequency:	yearly in the winter semester
	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
i onics.	KA: 2nd Semester [120 min]
	PVL: Programming project
	PVL have to be satisfied before the examination.
Credit Points:	6
Grade:	
Grade.	The Grade is generated from the examination result(s) with the following
	weights (w):
Morklood	KA: 2nd Semester [w: 1]
Workload:	The workload is 180h. It is the result of 60h attendance and 120h self-
	studies.