Data:	STCMS. MA. Nr. 3586 / Version: 16.07.2024 💈 Start Year: WiSe 2025
	Examination number:
	44506
Module Name:	Software Tools for Computational Materials Scientists
(English):	
Responsible:	Eidel, Bernhard / Prof. DrIng. habil.
Lecturer(s):	Prakash, Aruna / DrIng.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	The students will learn the basics of the Linux operating system and how
	to interact through the shell with the computer, in particular with the file
	system. Students achieve competencies on how to set up a work
	environment for their needs, how to monitor system resources and to
	connect securely to remote computers. Moreover, they are trained to
	apply shell programming and advanced tools for usage with the shell.
	Participants will learn and understand elements and techniques of the
	Python programming language and are empowered to carry out
	structured software development using the language. This includes
	basic design patterns, data structures, object-oriented programming, file
	handling, among others. Students obtain competencies to write code for
	scientific computing using specific packages and features for the
	purpose and to carry out scientific visualizations. Finally, participants
	will be able to operate version control systems for working in a
	collaborative fashion.
Contents:	The course is divided into two parts: In the first part, students learn to
	communicate with the computer through the Linux operating system
	including its tools, whilst in the second part they learn the Python
	programming language and aspects of scientific programming with this
	language. Subsequently, version control systems for collaborative
	working and usage of repositories will be introduced. Additionally,
	aspects of software testing and nuances pertaining to visualization of
	scientific data will be outlined.
Literature:	https://www.tldp.org/LDP/intro-linux/intro-linux.pdf
	https://python.org
	https://numpy.org
	https://matplotlib.org
	https://gitref.org
Turnen of Too shinn	(1) (M(C)) Lephurpe (2) (M(C))
Types of Teaching:	S1 (WS): Lectures (2 SWS)
Dro roquicitor:	S1 (WS): Exercises (2 SWS)
Pre-requisites: Frequency:	yearly in the winter semester
	t For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
Fornes.	MP/KA (KA if 8 students or more) [MP minimum 30 min / KA 120 min]
	PVL: Programming project
	PVL have to be satisfied before the examination.
	Voraussetzung für die Vergabe von Leistungspunkten ist das Bestehen
	der Modulprüfung. Die Modulprüfung umfasst:
	MP/KA (KA bei 8 und mehr Teilnehmern) [MP mindestens 30 min / KA
	120 min] PVI - Programmiorprojekt
	PVL: Programmierprojekt
Credit Points:	PVL müssen vor Prüfungsantritt erfüllt sein bzw. nachgewiesen werden.
	D The Grade is generated from the examination result(s) with the following
Grade:	Ine Grade is generated from the examination result(s) with the following

weights (w): MP/KA [w: 1]
The workload is 150h. It is the result of 60h attendance and 90h self- studies.