Data:	TMSMICS MA Nr. 3588 Version: 16.02.2022 🖜 Start Year: SoSe 2020
	/ Examination number:
	44507
Module Name:	Theory, Modelling and Simulation of Microstructures
(English):	
Responsible:	Fidel Bernhard / Prof. DrIng. habil
Lecturer(s):	Prakash Aruna / Dr -Ing
	Eidel, Bernhard / Prof. DrIng. habil.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Students will get familiar with some of the most relevant simulation
	methods for microstructures and will develop a fundamental
	understanding for the role of computer-based simulation methods in
	modern materials science. They obtain a detailed overview over the
	applications of most commonly used simulation together with their
	respective ranges of applicability. They learn the practical realization of
	cimulation tasks based on analysis of materials science problems
	Simulation tasks based on analysis of materials science problems.
	Inrough fundamental understanding of theory they will understand the
	mechanisms benind simulation methods.
Contents:	I his course provides an overview of simulation methods operating on
	length scales from the atomistic to the meso scale scale. Simulation
	methods introduced include, e.g., Molecular Statics and Molecular
	Dynamics as well as mesoscopic methods such as the Dislocation
	Dynamics method. The introduction of methods operating on different
	scales is complemented by a discussion of multiscale approaches, i.e.
	how models operating on different scales can be linked for increasing
	the computational efficiency and/or the degree of detail. The lecture is
	accompanied by hands-on tutorials where the students will implement
	some simulation methods by themselves.
Literature:	R. Lesar, Introduction to Materials Science, Cambridge University Press
	A. R. Leach, Molecular modelling – principles and applications, Pearson
	Education Ltd., Harlow
Types of Teaching:	S1 (SS): Lectures (2 SWS)
	S1 (SS): Exercises (2 SWS)
Pre-requisites:	Recommendations:
	Fundamentals of Microstructures 2022-02-16
	Knowledge of Python scripting, first Part of the Modul Software Tools for
	Computational Materials Scientists
Frequency:	yearly in the summer semester
Requirements for Credit	For the award of credit points it is necessary to pass the module exam
Pointe	The module exam contains:
	MP/KA (KA if 6 students or more) [MP minimum 20 min / KA 00 min]
	MF/NA (NA II O Students of more) [MF minimum 20 min / NA 90 min]
	PVL: Notifie work assignments
Credit Deinter	r ve have to be satisfied before the examination.
Credit Points:	D The Crede is generated from the exemination result(e) with the following
Grade:	ine Grade is generated from the examination result(s) with the following
	weights (w):
Workload:	The workload is 150h. It is the result of 60h attendance and 90h self-
	studies.