Data:	TM MA Nr 3222 / Ex- Version: 05 04 2018 🔭 Start Year: WiSe 2016
	amination number:
	51015
Module Name:	Thermodynamics of Materials
(English):	
Responsible:	Leineweber, Andreas / Prof. Dr. rer. nat. habil.
Lecturer(s):	Fabrichnava, Olga / Dr.
Institute(s):	Institute of Materials Science
Duration:	1 Semester(s)
Competencies:	The students understand thermodynamic properties of materials and are
	able to apply calculation methods of phase diagrams.
Contents:	Most important topics are:
	Thermodynamic laws and quantities
	Thermodynamic properties of materials
	Calculation of complex equilibria in multiphase and multicomponent
	systems
	Optimization of phase diagrams
Literature:	Mats Hillert, "Phase equilibria, phase diagrams and phase
	transformations", 2nd Ed., Cambridge (2009)
	Robert de Hoff, "Thermodynamics in Materials Science", 2nd Ed., Taylor
	& Francis (2006)
	Hans Leo Lukas, Suzana Fries, Bo Sundman, "Computational
	Thermodynamics, the CALPHAD method", Cambridge (2007)
Types of Teaching:	S1 (WS): Lectures (2 SWS)
	S1 (WS): Practical Application (1 SWS)
Pre-requisites:	Recommendations:
	Background in physical chemistry and materials science
Frequency:	yearly in the winter semester
Requirements for Credit	For the award of credit points it is necessary to pass the module exam.
Points:	The module exam contains:
	MP/KA (KA if 6 students or more) [MP minimum 30 min / KA 120 min]
	PVL: Successful completing of all practical courses
	PVL have to be satisfied before the examination.
Credit Points:	3
Grade:	The Grade is generated from the examination result(s) with the following
	weights (w):
	MP/KA [w: 1]
Workload:	The workload is 90h. It is the result of 45h attendance and 45h self-
	studies.