Data:	PINSM. MA. Nr. 3589 / Version: 12.07.2017 🛸 Start Year: WiSe 2019
Dala:	
	Examination number: 41910
Module Name:	Parameter Identification in Nonlinear Solid Mechanics
(English):	
Responsible:	Kiefer, Björn / Prof. PhD.
Lecturer(s):	Kiefer, Björn / Prof. PhD.
	Abendroth, Martin / Dr. Ing.
Institute(s):	Institute of Mechanics and Fluid Dynamics
Duration:	1 Semester(s)
Competencies:	Successful participation will enable students to apply concepts of
competencies.	nonlinear optimization to the problem of parameter identification for
	complex material models. In this context, they will be able to code, test
	and use classical optimization methods - as well as employ more
	advanced tools available in standard libraries (matlab, python) - and to
	combine them with algorithmic materials models and experimental data
	sets. The knowledge obtained in this course is transferrable to a broad
	spectrum of inverse problems in technology and the natural sciences.
Contents:	The calibration of parameters plays a central role in establishing
	predictively accurate constitutive models for complex, nonlinear
	material responses. In numerical optimization-based approaches to
	parameter identification an objective function that measures deviations
	between simulation results and experimental data is minimized to
	compute optimal parameter sets.
	After motivating the inverse problem of parameter identification the
	course provides an introduction to fundamental theoretical and
	algorithmic concepts of (constrained) nonlinear optimization. The
	lectures are accompanied by programing exercises that lead to hands-
	on experience with implementing and testing such optimization
	methods.
	In the second part of the course students learn to apply these numerical
	tools to the specific problem of parameter identification for nonlinear
	(elasto-plastic, visco-elastic etc.) material models. To obtain the
	necessary experimental data, students will help conduct experiments in
	the materials characterization laboratory of the solid mechanics group.
	The lectures will further address advanced concepts, such as the
	parameter identification via inhomogeneous deformation processes by
	combining digital image correlation and finite element analysis. Lastly, it
	is demonstrated that very similar numerical concepts can be employed
1 'he we have a	in solving structural optimization problems of nonlinear solid mechanics.
Literature:	 D. P. Bertsekas, Nonlinear Programming, Athena Scientific, Delmant, MA, 2nd edition, 1999
	Belmont, MA, 2nd edition, 1999.
	• D. G. Luenberger, <i>Linear and Nonlinear Programming</i> , Addison-
	Wesley, Reading, MA, 2nd edition, 1984.R. Mahnken, <i>Identification of Material Parameters for Constitutive</i>
	Equations, In Encyclopedia of Computational Mechanics, chapter
	 19, pages 637-655. John Wiley & Sons, New York, 2004. J. Nocedal and S. J. Wright, <i>Numerical Optimization</i>, Springer-
	• J. Nocedal and S. J. Wright, <i>Numerical Optimization</i> , Springer- Verlag, Berlin, 2nd edition, 2006.
Types of Teaching:	S1 (WS): Lectures (2 SWS)
i ypes of reaching.	S1 (WS): Lectures (2 SWS) S1 (WS): Taught in English and German. / Exercises (1 SWS)
Pre-requisites:	Recommendations:
•	Continuum Mechanics, 2017-05-18
	•
	Mechanics of Materials, Basic Knowledge of Numerical Methods

Requirements for Credit Points:	For the award of credit points it is necessary to pass the module exam. The module exam contains: MP/KA (KA if 10 students or more) [MP minimum 30 min / KA 120 min] Possible in German.
Credit Points:	4
Grade:	The Grade is generated from the examination result(s) with the following weights (w): MP/KA [w: 1]
Workload:	The workload is 120h. It is the result of 45h attendance and 75h self- studies.