Data: STOMATE. MA. Nr. 3221 Version: 05.07.2016 Start Year: WiSe	
Module Name: Stochastic Methods for Materials Science (English): Responsible: van den Boogaart, Gerald / Prof. Dr. Ballani, Felix / Dr. rer. nat.	
Module Name: Stochastic Methods for Materials Science (English): Responsible: van den Boogaart, Gerald / Prof. Dr. Ballani, Felix / Dr. rer. nat.	
(English): Responsible: van den Boogaart, Gerald / Prof. Dr. Ballani, Felix / Dr. rer. nat.	
Responsible: van den Boogaart, Gerald / Prof. Dr. Ballani, Felix / Dr. rer. nat.	
Ballani, Felix / Dr. rer. nat.	
octuror(c): Nan don Roogaart Carald / Drot Dr	
Ballani, Felix / Dr. rer. nat.	
Institute(s): Institute of Stochastics	
Duration: 1 Semester(s)	
Competencies: The student will understand the role of stochastic modelling and	
stochastic algorithms for computational material sciences. He/sh	ie will
learn to select, implement and test stochastic algorithms and mo	odels in
an applied context.	
Contents: The lecture introduces examples of stochastic methods of mater	ial
modeling, analysis and simulations: e.g. models and algorithms	for the
simulation of random structures (random mosaics, random comp	osites,
packing,) and random behavior (crack initiation, random loads	
random fatigue,), statistical and stereological analysis of struc	
data and EBSD-crystal orientation measurements, Monte-Carle	
algorithms for material simulation, Markov-Chain-Monte-Carlo/Mo	etropolis
Hastings algorithms for parameter estimation and structure	5 ti 0 p 5 ii 5
reconstruction.	
Literature: e.g. Chiu, Stoyan, Kendall, Mecke: Stochastic geometry and its	
applications, 3 rd ed. Wiley, Chichester, 2013	
Types of Teaching: S1 (WS): Lectures (2 SWS)	
Pre-requisites: Recommendations:	
Basic knowledge of stochastic, statistic, geometry, continuum	
	or bacic
mechanics, computer programming, and either crystallography of	JI Dasic
group theory.	
Frequency: yearly in the winter semester	
Requirements for Credit For the award of credit points it is necessary to pass the module	exam.
Points: The module exam contains:	
MP [30 min]	
AP: Programming Project	
Credit Points: 4	
Grade: The Grade is generated from the examination result(s) with the f	following
weights (w):	
MP [w: 1]	
AP: Programming Project [w: 1]	
Workload: The workload is 120h. It is the result of 30h attendance and 90h	self-
studies.	